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Abstract. The purpose of this paper is to describe and compare the dissipative effects on 
the scaling laws of the Obukhov-Corrsin universal equilibrium theory as intermittency 
corrections formulated according to the log-normal model of Obukhov and Kolmogorov 
and the p model of Frisch er 01 under conditions of Prandtl numbers away from unity. 

1. Introduction 

According to the Obukhov-Corrsin theory [ 1 , 2 ]  the small-scale structure of the tem- 
perature field has a universal character. That is, in turbulence at high Reynolds and 
Peclet numbers, there exists for large wavenumbers a convective subrange where 
turbulence is isotropic and is uniquely determined by the average dissipation rates ,y 
and E, the kinematic viscosity v and the thermal diffusivity K ,  and is independent of 
the large-scale features of the flow. However, the Obukhov-Corrsin theory has not 
taken into account the intermittency in the flow that leads to the spatial randomness 
of dissipation rates ,y and E ,  which would be expected to depend on Reynolds and 
Peclet numbers and to cause at the lower end of the convective subrange systematic 
departures from the Obukhov-Corrsin scaling laws which use mean dissipation values. 
One could now follow Obukhov [3] and Kolmogorov [4] and reformulate the ideas 
in the Obukhov-Corrsin theory by introducing local mean dissipations, determined 
by averaging over a suitably small region in space. Under the assumption that these 
are random variables following logarithmic-normal distributions, one could then 
deduce how some of the original local similarity arguments applied to structure 
functions would change under the new interpretation. Alternatively, one could follow 
Mandelbrot [ 51 and argue that the deviations from the Obukhov-Corrsin scaling laws 
are related to the fractal aspects of the geometry of turbulence. In particular, one may 
assume that the dissipations ,y and E are concentrated on a set with non-integer 
Hausdorff dimension. These ideas can be formulated in a simpler way through the 
so-called P model [ 6 ] .  The key assumption in the P model is that the flux of energy 
is transferred to only a fixed fraction P of the eddies downstream in the cascade. A 
noteworthy feature of this approach is that one does not have to assume the Obukhov- 
Corrsin scaling law initially and then derive its modified version by somehow mys- 
teriously taking into account fluctuations in the dissipations. The purpose of this paper 
is to carry out both the log-normal and P-model formulations and to compare and 
discuss the results under conditions where the Prandtl number is away from unity. 

0305-4470/89/091253+05%02.50 @ 1989 IOP Publishing Ltd 1253 



1254 B K Shivamoggi, R L Phillips and L C Andrews 

2. Log-normal model 

The temperature structure function in the inertial-convective range assumes the form 

D ( r )  -X&-1/3r'/3 (1) 

which is the well known 3 power law. In  the viscous-convective range, the viscous 
effects may be imagined to cause spatial randomness of e, while x remains invariant 
in view of the absence of thermal diffusive effects in this range. Following Obukhov 
[3] and Kolmogorov [4], let us introduce for e a local mean value e, determined by 
averaging over a suitably small region in space of dimension r. Let us further assume 
that E ,  is a random variable following a logarithmic normal distribution, so that 

( 2 )  

where (T' is the variance of log E, and E does not depend on r. The variance U* has 
the form 

(&;) = e u ( a - l ) r r ' / 2  

c r 2 =  Q + p  log(:) (3)  

where L is t4e integral scale of turbulence, Q is a function depending upon the large 
scales, and p is a universal positive constant. 

Inserting (3) into (2)  yields 

and, in particular, 
- 2 f i ! 9  

Replacing with (e ; "3 )  and x with ,f in ( l ) ,  we obtain 

(5) 

which show deviations from the r2'3 law due  to the dissipation fluctuations. The 
spectral law in the inertial subrange corresponding to (6) is therefore given by 

(7 )  
Observe that the intermittency corrections to the temperature spectrum decrease the 2 
exponent. Physically, this is due  to the fact that the 'driver' velocity fluctuations 
weakened by the intermittency effects cause the 'driven' temperature fluctuations to 
pile up  in the wavenumber space. Such a state of affairs is well known to prevail in 
the viscous-convective range for large Prandtl numbers [7]. The intermittency effects 
in the latter range can be interpreted as being solely those due  to viscosity. 

In the inertial-diffusive range the thermal diffusive effects cause spatial randomness 
of x while e now remains invariant in view of the absence of viscous effects in this 
range. However, since ( x r )  = ,f, where x ,  is the average thermal dissipation in a small 
volume of dimension r, there is no intermittency correction in this regime based on 
the log-normal model. This is inconsistent with the theory of Batchelor et a1 [6] which 
shows that there is a departure from the k-5'3 law in this regime, and  may therefore 
be viewed as a defect in the log-normal model. 

r ( k )  _ ~ ~ - 1 / 3 k - S , ' 3 ( k ~ ) Z c L ! 9 .  
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It may be mentioned that a theory based on the joint probability distribution of E ,  

and xr as a bivariate log-normal was given by Van Atta [ 9 ] .  But this theory is restricted 
to Prandtl numbers of unity so that it cannot treat the viscous-convective and inertial- 
diffusive regimes prevalent at Prandtl numbers away from unity. 

3. The &model 

Consider a discrete sequence of scales 

1, = lop-" n =0 ,  1 , 2 , .  . . (8) 
and  a discrete sequence of wavenumbers k, = 1 ; ' .  The kinetic energy and scalar 
variance per unit mass in the nth scale are defined by 

and  

Let us assume that we have a statistically stationary turbulence where kinetic energy 
and  scalar variance are introduced into the fluid at  scales - I  and are then transferred 
successively to scales I , ,  1 2 ,  . . . until some scale 1, where dissipations are able to compete 
with non-linear transfers. We now make the assumption that at the nth step, only a 
fraction pS2" (the - and + signs refer to the viscous-convective and  inertial-diffusive 
regimes, respectively) of the total space has an appreciable excitation so that the 
standard Obukhov-Corrsin phenomenology is valid only in this active region. The 
kinetic energy and the scalar variance per unit mass in the active region of the nth 
scale are then given by 

where V, and  6, are the characteristic velocity and temperature, respectively, of the 
nth scale, and 

D-3 n - [ p " = ( p  ) - - . 

Here D is the fractal dimension ( D  < 3)  of the region in which the dissipations x and 
E are concentrated. The results in (10) are consistent with the experimentally observed 
fact [ 101 that the temperature fluctuations exhibit a higher degree of intermittency than 
the velocity fluctuations. Equation (1 1) expresses the fact that the intermittency 
increases with decrease of scale size. 

The rates of transfer of kinetic energy and scalar variance for unit mass from the 
nth scale to the (n + 1)th scale are given by 

r, pTZne;vn 
tn I ,  

X n  --- 
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where t ,  - I,/ V, is a characteristic time of the nth scales. In the convective subrange, 
we assume a stationary process in which kinetic energy and  scalar variance are 
introduced at  scales - I ,  and removed at scales - I , .  Conservation of kinetic energy 
and  scalar variance requires that 

where d and  ,f are the mean rates of kinetic energy dissipation and scalar variance 
dissipation, respectively. 

Using (13), equations ( lo) - (  12) then give 

and  

Hence, based on (146) we find the intermittency correction 
-! n -3 ) ( 3 -  0 113 

( & n / 3 i - p . 1 3 ( 3  

In the viscous-convective regime ,y remains invariant, i.e. ,y = ,f, and we have from 
(12) and (14) 

where, according to (15 ) ,  
413-0113 

(& - 11 3 )  - 5 - 113 (!!!) 
Substituting this result into (16) yields 

and the corresponding spectral law is 

(18b) 

Equation (18b)  shows that in the viscous-convective regime, the intermittency correc- 
tion to the temperature spectrum decreases the 5 exponent, similar to that found based 
on the log-normal model. Observe that (18b)  reduces to Batchelor's [ 1 1 1  result if D = 2. 

In the inertial-diffusive regime it is E that remains invariant, i.e. E = C, and on 
noting further that ( x ) = , f ,  we have from (12) and (14) 

r ( k )  - ~ d - 1 / 3 k - 5 / 3 ( k 1 ~ ) 2 ( 3 - D ) / 3 .  

which leads to the spectrum 
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Comparison of (186) and  (19b)  shows that the 8 spectrum falls off much more 
steeply in the inertial-diffusive range than i t  does in the viscous-convective range. 
Physically, this is due to the fact that the temperature fluctuations are being rushed to 
higher wavenumbers by the strong velocity fluctuations (which are not yet diminished 
by viscosity), while being cut in by thermal diffusivity. Observe that (196) reduces to 
the result of Batchelor et a1 [8] if D = 1 (note that the inertial-diffusive regime is more 
intermittent than the viscous-convective regime). 

4. Discussion 

We have just seen that the departures from the Obukhov-Corrsin scaling laws can be 
described in terms of intermittency corrections through the log-normal as well as the 
p model. In order to compare the two results, let us recall that the universal constant 
p and the fractal dimension D are related by 

p = 3 - D .  (20) 

Using (201, comparison of ( 7 )  and (186) shows that the intermittency correction given 
by (7) is smaller than that given by (18b) by a factor of 3 so that the log-normal model 
underestimates the intermittency correction in the viscous-convective regime. On the 
other hand, the log-normal model misses the intermittency corrections altogether in 
the inertial-diffusive regime. In  general the intermittency corrections obtained above 
may be too small to allow for an experimental verification at the usual level of energy 
and  temperature spectra. 

Finally, we mention that one may generalise the p model to admit the possibility 
that the region of excitation is instead a non-homogeneous fractal. Thus, in the spirit 
of Mandelbrot’s [ 121 weighted-curdling model, the contraction factors (i.e. p )  may be 
considered to be independent random variables [13] which can take different values 
in each scale i at the nth step of the cascade. 
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